US 2001/0029605 Al

SOFTWARE PACKAGE MANAGEMENT

RELATED APPLICATION

[0001] This application is related to U.S. patent applica-
tion Ser. No. 08/764040, titled AUTOMATIC SOFTWARE
DOWNLOADING FROM A COMPUTER NETWORK,
filed on Dec. 12, 1996, and assigned to the assignee of the
present application.

COPYRIGHT NOTICE/PERMISSION

[0002] A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever. The following notice applies to the soft-
ware and data as described below and in the drawing hereto:
Copyright @ 1997, Microsoft Corporation, All Rights
Reserved.

FIELD OF THE INVENTION

[0003] This invention relates generally to software distri-
bution, and more particularly to the management of software
packages after distribution.

BACKGROUND OF THE INVENTION

[0004] Historically, the primary medium for software dis-
tribution has been either the traditional floppy disk or the
more recent compact disc (CD-ROM). However, more and
more individuals are acquiring software by downloading it
from remote server computers connected to the client com-
puters through the Internet. Additionally, companies and
organizations are distributing software to their users across
their local area networks. The physical medium is the
network cable itself and the supporting communication
hardware, a fixed cost associated with the establishment of
the network. Therefore, distributing and installing software
over an existing network bypasses the cost overhead of
producing CDs or floppy disks.

[0005] In addition, using the network as the distribution
medium profoundly reduces the software’s total cost of
ownership to an extent that cannot be achieved by CDs or
floppies even when the media cost almost nothing to manu-
facture. Software distribution via CDs and floppies obey the
“pull” paradigm, where every action is user-initiated. Dis-
tribution over the network has the ability to apply a “push”
paradigm which provides three main benefits.

[0006] First, the installation is “hands-free” in that the user
does not have to manually install the software. Second, the
software can be easily and timely upgraded from a desig-
nated location because the burden of upgrading is borne by
the software itself. Third, because different types of com-
puter hardware and operating systems can connect to a
common network, software distributed over the network can
be made to work across platforms or intelligent so that only
the correct version of platform-specific software is pushed
down to the user.

[0007] However, current methods of software distribution
over a network do not fully exploit the benefits. Existing
distribution of platform-specific, or “native code,” software

Oct. 11, 2001

relies on installation file formats that are hard to create, not
extensible, and specific to a particular operating system.
Although most current software is written in modules, there
is no current mechanism that handles the situation where one
component in a software program requires the presence of
another to operate. If a user downloads software from a Web
page, the user may discover that the program requires an
external library which necessitates another network session
to download, assuming the user can find the right location,
and then the user must manually install the library before
installing the software.

[0008] Software programs written in the popular platform-
independent Java language require that the Java classes be
“packaged” for distribution but the package does not contain
persistent information so once Java software is installed on
a client computer, all information about it is lost. It is
impossible to tell what the version number is, where it came
from, or whom the author is. Additionally, the current
network distribution methods make it difficult to digitally
sign a Java package for security purposes.

[0009] More problems arise when a user wants to execute
an application which depends on both native code compo-
nents and Java components since the distribution methods
are completely different. Finally, once the software is down-
loaded and successfully installed on the client computer, no
mechanism exists to track all of the components so that older
versions can be easily superceded when newer version are
available or that all the related components can be readily
uninstalled when necessary.

[0010] Therefore, there is a need for a software distribu-
tion and tracking mechanism that handles cross-platform
software, specifies the component dependencies, and is
applicable to both the older distribution media as well as to
the network distribution paradigm.

SUMMARY OF THE INVENTION

[0011] The above-mentioned shortcomings, disadvantages
and problems are addressed by the present invention, which
will be understood by reading and studying the following
specification.

[0012] A software package manager uses a distribution
unit containing components for a software package and a
manifest file that describes the distribution unit to manage
the installation, execution, and uninstallation of software
packages on a computer. For installation, the package man-
ager acquires the manifest file and parses it to learn if the
software package depends on any additional components.
The package manager resolves any dependencies by acquir-
ing a distribution unit containing the needed component and
installs the dependency’s distribution unit as described
below. Because dependencies can nested within dependen-
cies, the package manager recursively processes all the
dependencies before finishing the installation of the software
package that depends upon the additional components.

[0013] The software package manager acquires the distri-
bution unit and extracts the components in the distribution
unit into a directory on the computer. The package manager
causes the operating system of the computer to install the
software. The package manager then updates a code store
data structure with information in the manifest file. The
fields in the code store data structure contains such infor-



